图7 太平洋岛弧火山熔岩δ11B与w(Nb)/w(Yb)相关关系图
(据Leeman和Tonarini,1998)
Fig.7 Plot of δ11B versus w(Nb)/w(Yb) of lavas from Pacific arcs
在冰岛,拉斑玄武岩中含有橄榄石斑晶(Fo
87~91)和大量原生的玻璃包体,这些包体被认为代表了原始的或近原始的地幔熔体,它们未遭受浅部后生过程的改造。离子探针分析表明,这些熔浆包体的B含量以及w(B)/w(K)比值变化很大(w(B)=(0.18~1.35)×10-6,w(B)/w(K)=2.8×10-4~6.1×10-3),但δ11B值则十分恒定(-11.3‰±1.9‰)。而玄武质玻璃的B含量和δ11B值则稍有不同,在Hengill区,它们的B含量很低w(B)=(0.26~0.42)×10-6,但δ11B值(-11.3‰±1.3‰)类似于熔岩包体。在Reykjanes区,玄武质玻璃的δ11B值稍高(约-3‰),但它们的B含量也很低(0.43~0.44)×10-6。Curenko和Chaussidon[29]认为,这可能是在岩浆上侵过程中,受到已遭热液蚀变的地壳岩石混染的结果。
对意大利Vulcano地区近代喷发的(1888—1890)La Fossa熔岩的硼同位素研究表明,δ11B变化很小(-3‰~-1.5‰),B质量分数很高(20~200)×10-6。而年代稍老12×104~<104
a的基性火山熔岩δ11B变化较大(-11‰~+0.4‰),并与其他同位素(Sr,Nd,Pb)和元素对比值w(B)/w(La),w(B)/w(Be)呈线性相关,反映了岩浆源区的混合作用[30]。
意大利的Vulsini火山岩区中富钾火山岩橄橄石晶体熔融包裹体的B质量分数高达(60~100)×10-6,是迄今为止发现的最富B的未分异原始岩浆[31]。这些熔浆包体虽具有不同的B,K,Sr和F含量,但这些元素对比值十分恒定,反映了对同一富B,K,Sr和F的地幔源岩不同程度的部分熔融结果。
最近,Peacock和Hervig[32]分析了板块俯冲带变质岩中各硅酸盐矿物的硼同位素组成。总的δ11B值变化范围为-10.9‰~-2.7‰。它们比洋壳(-5‰~+25‰)和海洋沉积物(-7‰~+11‰)的δ11B值要低,说明板块向下俯冲伴随的变质脱水作用造成了明显的硼同位素分馏,使水相溶液富11B,而变质板块相对贫11B。产于加州的Franciscan高压蓝片岩中的多硅白云母具有较低的δ11B值(-10.9‰±1.8‰)。该地区镁铁质榴辉岩中未遭受退化变质的原生多硅白云母具有较高的δ11B值(-2.7‰±1.0‰),而遭受水热退化变质的多硅白云母脉δ11B值下降(-6.7‰±1.9‰),围绕榴辉岩产出的热液交代形成的阳起石和多硅白云母的δ11B值更低,分别为-7.2‰±3.0‰和-7.0‰±1.7‰。在西阿尔卑斯山的Dora
Maira含柯石英榴辉岩中多硅白云母(形成深度h>90 km)的δ11B值居中(-6.1‰±0.6‰)。产于加州的与俯冲作用有关的变质岩中白云母和角闪石的δ11B值分别为-6.7‰±2.0‰和-3.0‰±3.0‰。而一件蛇纹石样品的δ11B值较低(-10.4‰±1.2‰)[32]。
4 结论
综上所述,硼同位素已经成为研究壳幔演化、板块俯冲和岩浆形成及演化过程中十分灵敏的地球化学示踪剂。将硼和硼同位素与其他元素对比值和锶钕铅同位素组成结合起来,可以有效地了解壳幔相互作用过程,示踪壳源物质(如大洋沉积物、蚀变洋壳等)是如何在地幔中循环的。因而这一新的同位素方法具有广阔的应用前景。
基金项目:国家杰出青年科学基金项目(49925306)
作者简介:蒋少涌(1964— ),男,博士,教授,同位素地球化学专业。
蒋少涌(南京大学
成矿作用国家重点实验室,南京 210093)
于际民(南京大学 成矿作用国家重点实验室,南京 210093)
凌洪飞(南京大学 成矿作用国家重点实验室,南京 210093)
倪培(南京大学 成矿作用国家重点实验室,南京 210093)
参考文献:
[1] Barth S.Boron isotope variations in nature:a synthesis[J].Geol
Rundsch,1993,82:640~651.
[2] Bassett R L.A critical evaluation of the available measurements for the
stable isotopes of boron[J].Applied Geochemistry,1990,5:541~554.
[3] Palmer M R,Swihart G H.Boron isotope geochemistry:an overview[J].E S
Grew,L M Anovitz,eds.Boron:Mineralogy,Petrology and Geochemistry.Reviews in
Mineralogy,1996,33:709~744.
[4] Jiang S Y,Palmer M R.Boron isotope systematics of tourmaline from granites
and pegmatites:a synthesis[J].European J Mineralogy,1998,10:1253~1265.
[5] McMullen C C,Cragg C B,Thode H G.Absolute ratio of11B/10B
in Searles Lake borax[J].Geochim Cosmochim Acta,1961,23:147~149.
[6] Ramakumar K L,Parab A R,Khodade P S,Determination of isotopic composition
of boron[J].J Radioanal Nucl Chem Lett,1985,94:53~62.
[7] Spivack A J,Edmond J M.Determination of boron isotope ratios by thermal
ionization mass spectrometry of the dicesium metaborate cation[J].Analytical
Chemistry,1986,58:31~35.
[8] Vengosh A,Chivas A R,McCulloch M T.Direct determination of boron and
chlorine isotopes in geological materials by negative thermal-ionization mass spectrometry[J].Chemical
Geology,1989,79:333~343.
[9] Hemming N G,Hanson G N.Boron isotopic composition and concentration in
modern marine carbonates[J].Geochim Cosmochim Acta,1992,56:537~543.
[10] Chaussidon M,Albarede F.Secular boron isotope variations in the
continental crust:an ion microprobe study[J].Earth Planet Sci Lett,1992,108:229~241.
[11] Cantanzaro E J,Champion C E,Garner E L,et al.Boric acid:isotopic and
assay standard reference materials[J].U S National Bureau Standards Special
Publication 1970,260(17):70.
[12] Spivack A J,Edmond J M.Boron isotope exchange between seawater and the
oceanic crus[J].Geochim Cosmochim Acta,1987,51:1033~1043.
[13] Ryan J G, Langmuir C H.The systematics of boron abundances in young
volcanic rocks[J].Geochim Cosmochim Acta,1993,57:1489~1498.
[14] Ridley W I,Perfit M R,Jonasson L R,et al.Hydrothermal alteration in
oceanic ridge volcanics:a detailed study at the Galapagos fossil hydrothermal field[J].Geochim
Cosmochim Acta,1994,58:2477~2494.
[15] Ryan J G,Leeman W P,Morris J D,et al.The boron systematics of intraplate
lavas:implications for crust and mantle evolution[J].Geochim Cosmochim
Acta,1996,60:415~422.
[16] Chaussidon M,Jambon A.Boron content and isotopic composition of oceanic
basalts:geochemical implications[J].Earth Planet Sci Lett,1994,121:277~291.
[17] Chaussidon M,Marty B.Primitive boron isotope composition of the mantle[J].Science,1995,269:383~386.
[18] Palmer M R.Boron-isotope systematics of Halmahera
arc(Indonesia)lavas:evidence for involvement of the subducted slab[J].Geology,1991,19:215~217.
[19] Smith H J.The boron isotopic composition of oceanic crust[D].Ph D
Thesis.San Diego Univ Calif,1994.
[20] Smith H J,Spivack A J,Staudigel H,et al.The boron isotopic composition of
altered oceanic crust[J].Chemical Geology,1995,126:119~135.
[21] Ishikawa T, Nakamura E.Boron isotope systematics of marine sediments[J].Earth
Planet Sci Lett,1993,117:567~580.
[22] Morris J,Leeman W P,Tera F.The subducted component in island arc
lavas:constraints from Be isotopes and B-Be systematics[J].Nature,1990,344:31~36.
[23] Brenan J M,Ryerson F J,Shaw H F.The role of aqueous fluids in the
slab-to-mantle transfer of boron,beryllium,and lithium during subduction:experiments and
models.Geochim Cosmochim Acta,1998,62:3337~3347.
[24] Ryan J G,Morris ,Tera F,et al.Cross-arc geochemical variations in the
Kurile arc as a function of slab depth[J].Science,1995,270:625~627.
[25] Ishikawa T,Nakamura E.Origin of the slab component in arc lavas from
across-arc variation of B and Pb isotopes.Nature,1994,370:205~208.
[26] Smith H J,Leeman W P,Davidson J, et al.The B isotopic composition of arc
lavas from Martinique,Lesser Antilles[J].Earth Planet Sci Lett,1997,146:303~314.
[27] Leeman W P,Tonarini S.Fluids in subduction zone magmatism:Implications of
boron geochemistry[J].Mineral Magazine,1998,62A:873~874.
[28] Ishikawa T,Tera F.Source,composition and distribution of the fluid in the
Kurile mantle wedge:constraints from across-arc variations of B/Nb and B isotopes[J].Earth
Planet Sci Lett,1997,152:123~138.
[29] Gurenko A A,Chaussidon M.Boron concentrations and isotopic composition of
the Icelandic mantle:evidence from glass inclusions in olivine[J].Chemical
Geology,1997,135:21~34.
[30] Tonarini S,Pennisi M,Ferrara G,et al.Boron isotopic compositions of
volcano lavas:new constraints on magma origin and evolution and subduction zone processes[J].EOS,1995,76:F677.
[31] Metrich N,Joron J-L,Berthier B.Occurrence of boron-rich potassic melts in
the Vulsini volcanic district,Italy:evidence from melt inclusions[J].Geochim Cosmochim
Acta,1998,62:507~514.
[32] Peacock S M,Hervig R L.Boron isotopic composition of subduction-zone
metamorphic rocks[J].Chemical Geology,1999,160:281~290.
收稿日期:2000-01-12 |